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ABSTRACT

Many drug concentration-effect relationships are described by nonlinear sigmoid
models. The 4-parameter Hill model, which belongs to this class, is commonly used.
An experimental design is essential to accurately estimate the parameters of the
model. In this report we investigate properties of D-optimal designs. D-optimal de-
signs minimize the volume of the confidence region for the parameter estimates
or, equivalently, minimize the determinant of the variance-covariance matrix of the
estimated parameters. It is assumed that the variance of the random error is pro-
portional to some power of the response. To generate D-optimal designs one needs
to assume the values of the parameters. Even when these preliminary guesses about
the parameter values are appreciably different from the true values of the parame-
ters, the D-optimal designs produce satisfactory results. This property of D-optimal
designs is called robustness. It can be quantified by using D-efficiency. A five-point
design consisting of four D-optimal points and an extra fifth point is introduced
with the goals to increase robustness and to better characterize the middle part of
the Hill curve. Four-point D-optimal designs are then compared to five-point de-
signs and to log-spread designs, both theoretically and practically with laboratory
experiments.
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D-optimal designs proved themselves to be practical and useful when the true
underlying model is known, when good prior knowledge of parameters is available,
and when experimental units are dear. The goal of this report is to give the practi-
tioner a better understanding for D-optimal designs as a useful tool for the routine
planning of laboratory experiments.

Key Words: D-optimal design, Hill model, parameter estimation, nonlinear model

Many drug concentration-effect relationships are described by nonlinear sigmoid
models. The 4-parameter Hill model, which belongs to this class, has been commonly
used to characterize the concentration dependence of many biochemical, physiolog-
ical and pharmacological responses (Holford and Sheiner, 1981). In our experience
with several hundred concentration-effect laboratory experiments, the Hill model
has been found to fit data exceedingly well. Parameter estimation with the Hill model
is a special case of the general problem of parameter estimation in nonlinear regres-
sion models (Box and Lucas, 1959; Bates and Watts, 1988; Seber and Wild, 1989).
Both the method of estimation (Sheiner and Beal, 1985; Giltinan and Ruppert, 1989;
Amisaki and Eguchi, 1999) and the experimental design (Merle and Mentre, 1997)
are essential in order to obtain reliable estimates of the pharmacokinetic param-
eters. While the two components of a sound estimation procedure are intimately
related, we focus on the design part in this report. More specifically, we investigate
properties of D-optimal designs (Atkinson and Donev, 1992). D-optimality is a pop-
ular criterion since it is geometrically intuitive when a model is linear. In this case
the confidence region for the model’s parameters is ellipsoidal. A D-optimal design
minimizes the content of this confidence region and so minimizes the volume of the
ellipsoid. A-optimality and E-optimality are two other criteria directly related to the
shape of the ellipsoid. The two criteria are algebraically expressed in terms of the
lengths of the axes of the confidence ellipsoid. G-optimality is yet another criterion.
While it is not directly linked to the confidence ellipsoid, G-optimality is intimately
related to D-optimality. The celebrated General Equivalence Theorem establishes
this relationship and thus offers a useful tool to test for D-optimality. There exist also
other criteria of optimality along with the ones mentioned above. An advantage of D-
optimality is that the optimal designs do not depend upon the scale of the variables.
Linear transformations do not change D-optimal designs, which is not in general
true for A- and E-optimal designs. In nonlinear regression, a linear approximation
to the nonlinear model is used. Unlike in a linear case, D-optimal designs for nonlin-
ear models generally depend on the assumed parameter values. However, even when
these preliminary guesses about the parameter values are appreciably different from
the true values of the_parameters the D-optimal designs produce satisfactory results.
This property of D-optimal designs is called robustness and can be quantified by D-
efficiency. We show that D-optimal designs, pure or modified, are acceptably robust
with respect to the deviation of the prediction of the parameter vector from the true
one. Our work extends research on optimal designs for the 3-parameter Hill model
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by Endrenyi and his group (Bezeau and Endrenyi, 1986; Endrenyi e al., 1987). The
goal of this paper is to give the practitioner a better understanding for D-optimal
designs as a useful tool for the routine planning of laboratory experiments.
THEORETICAL SECTION

We shall assume that the relationship between observed responses (y,,;) and
preset input concentrations (D) is expressed as:

n
(Econ - b) (Ilc);o)

Yob,i = 0.
D;
1+ (IC50>

where g; are random errors of measurement. The first two terms on the right side
of Eq. (1) are values of the structural Hill model presented in Figure 1. In the
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Figure 1. Graph of the 4parameter Hill model. The following parameter values have been
assumed: E.,, = 100, 5 = 20, ICso = 1,and m = —1.5.
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equation of the Hill model shown in Figure 1, as well as in Eq. 1, D is the dose
(concentration) of a drug (input), yis the effect, and Fon, 6, IGso and m are the
parameters. The parameters m and & are termed the slope and the background,
respectively. The physical interpretation of the parameters is shown in Figure 1.
[Note the introduction of Ey,,x which is equal to E.op — b.] Econ — b is the range for
the model. The +b term raises the lower asymptote of the curve up to the b level.
Thus, at infinite drug concentration, there is still a residual signal. The & level of the
signal can have both instrumental and biological meaning. For instance, for drugs,
which inhibit growth of cells but do not kill cells, the & level may represent the cells
in the culture vessel at the time of drug addition. E., is the control level (effect at
0 dose); ICs is the dose resulting in 50% of the E.,, — & range. The response curve
is rising when m is positive, and it is falling when m is negative. For the remainder
of this paper, we will assume that we have an inhibitory drug, i.e. the Hill function
monotonically decreases as drug concentration increases. However, all of the results
are applicable to the case of stimulatory drugs, with minor modifications. We used
Econ = 100 in Figure 1. In this case y can be interpreted as percentage of control.
Generally, E., can be arbitrary. '

We assume that in Eq. 1 there are no systematic errors, which means that the
expected values of the observations are the true responses, E(yy,;) = 3. It is also
assumed that each ¢; is normally distributed with the error variance, al?, described
by the power model (Mannervick, 1982; Davidian and Carroll, 1987; Giltinan and
Ruppert, 1989), where variance is proportional to the true response raised to the
power, 2A:

ot =P ®

Here the parameter A is a nonnegative real number, og is the proportionality pa-
rameter. Constant variance is implied when A = 0, whereas A = 1 corresponds to
constant coefficient of variation. The variance of the Poisson distribution behaves
as (2) with A = 0.5. The power model (2) is commonly used for heteroscedastic
regression modeling in pharmacokinetics. Our laboratory experience with several
hundred concentration-effect experiments confirmed the appropriateness of (2) for
modeling data variation (Levasseur, et al., 1995; Levasseur et al., 1998).

Once (2) hasbeen assumed to be an appropriate random model for data variation,
then W, an (n X n)-dimensional diagonal weighting matrix, will have its non-zero
entries w; located along the main diagonal. These weights can be computed in terms
of true responses as:

w =y (3)

The weighting matrix appears in the equations below to account for heteroscedas-
ticity. Clearly, in a homoscedastic situation, this matrix becomes the identity matrix.
The volume of the ellipsoidal confidence region is proportional to the deter-
minant of the variance-covariance matrix of the estimated parameters. The in-
formation matrix M is the inverse (up to a scalar multiplicative constant) of the
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variance-covariance matrix of estimated parameters. This is why D-optimization
yields the smallest generalized variance of the parameters by maximizing the de-
terminant of the information matrix M:

det(M(w, £§*)) = m?x det(M(w, £)) (4)

Here ¢ = (D, Dy, ..., Dy) is any feasible design, w is an appropriate weight func-
tion, and &* is the D-optimal design.

Define hT(D) be a 1 x 4 vector of the partial derjvatives of the Hill model with
respect to each of the four parameters Econ, b, JGso and m. All 4 partial derivatives
are evaluated at the true values of Econ, b, ICsp and m, which is why h7(D) depends
solely on D, rather than on D and parameters. To compute D-optimal designs one
needs to first calculate matrix F, the extended design matrix (Atkinson and Doney,
1992) or a Jacobian (Nash, 1979). Its rows are h7(D;), the partial derivatives of the
Hill model with respect to each of the four parameters. These partial derivatives are
estimated at each of the design points, D;, which is why the dimensions of the matrix
F are n x 4 (generally, n X p,where p is the number of estimable parameters in the
model), »

For many D-optimal designs, the design contains p points, with one observation
taken at each point. If that is the case, then Fis a px p-dimensional matrix and the
information matrix is computed as

T
M, §) = T, (®)
p
where F7 is a transposed matrix F. A more general definition of the information
matrix can be found in the statistical literature (Atkinson and Doney, 1992).
The D-efficiency of any design & is computed according to the following formula:

_<det(M(zu,§-‘)) Vp
e det(M(w,i-‘*)))

The reciprocal of D-efficiency can be thought of as the factor by which a given
design & should be replicated in order to achieve a precision of parameter esti-
mates equal to that of D-optimal design. For example, 2 replicates of a design with
D-efficiency of 0.5 are needed to achieve the same precision as that of the D-optimal
design £*.

When a maximizatién procedure is used to satisfy D-optimality criterion (Eq. 4),
one needs to be aware thata local, rather than a global, maximum could be reached.
One way to ascertain that a found candidate design is indeed D-optimal is to apply
the General Equivalence Theorem. In order to state it, we introduce G-optimality.
The objective of a G-optimal design is to minimize the standardized variance of the
predicted response (the weighting factor being accounted for): §* is called G-optimal
if

(6)

g(w, &%) =m§in g(w, §), (7)
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where g(w, §) is defined as following:

g(w, §) = max w(D)h" (D)M ™ (w, £)h(D) (8)

Here h” (D) is the row vector of partial derivatives of the Hill model, X is the design
region (it is a closed interval on the dose axis in this study).
A sufficient condition for £* to satisfy (Eq. (7)) is

g(w, ") =p (9)

The General Equivalence Theorem states that conditions (4), (7), and (9) are
equivalent. .

The condition (9) means that the function w(Dyh? (D)YM™! (w, £)h(D) has, as a
function of D, aglobal maximum equal to 4 over the design region Xwhen & = §*, the
D-optimal design. This condition is easily verifiable by simply plotting the function
for a candidate design, §, and then deciding whether condition (9) is satisfied or not.

Thus the General Equivalence Theorem is of great practical importance because
it can be invoked to confirm D-optimality.

METHODS

Our work was aimed at generating D-optimal designs for the model described
by (1-2) and then investigating properties of such designs. The effort was focused
on finding practical constrained designs rather than unconstrained ones. There-
fore, our design region is a closed interval 0 < D < Dp,,. We let A to be greater
than 1, thus relaxing the assumption 0 < A < 1, made in previous work (Bezeau
and Endrenyi, 1986). We assumed that the D-optimal design for the adopted model
contains 4 support points that have equal frequencies. Based on that assumption,
design-candidates were generated. The G-optimality criterion was routinely applied
to test the designs. Analytical expressions simplifying calculation of the determinant
of the information matrix M were derived and then coded in Mathematica and For-
tran. We proved analytically that Dpay, the highest feasible concentration, is always
a support point of the D-optimal design, and that D = 0 is a support pointif A < 1.
However, the latter is not generally true when A > 1. We found that A and 5/ E,,
are the 2 major quantities affecting whether D = 0 belongs to the D-optimal design.
This is why we emphasize A and 4/ E.o;, by allowing them to vary in Figure 2. While
the other parameters may have an effect, it is marginal even when these parameters
vary within quite a broad range. The analysis summarized in Figure 2 was conducted
for fixed values of the other two Hill parameters, ICsp and m. These are IGyy = 1,
m = —1.5. Itis also assumed that Dn.x = 1000. Figure 2 shows two regions: region A,
consisting of such combinations of (A, &/ E.o,) which resultin a D-optimal design not
having D = 0 among its points, and region B of (A, #/F.,) conforming to designs
containing D = 0. As shown in Figure 2, for any given A, D = 0 will always belong
to the D-optimal design if b/ F.,n exceeds a certain threshold depending on A. The
threshold is tiny when A is close to 1, and it rises toward 1 itself when A becomes
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Figure 2. Two regions: A, conforming to the D-optimal designs not having D = 0 among
its points, and B, conforming to the D-optimal designs, having D = 0 as a design
point, are separated from each other. The parameters assumed are: IGo = 1,
m = —1.5, Dna = 1000.

unusually high. So, for the values of A = 0.5 or A = 1, D = 0 is among D-optimal
design points. When A = 2, D = 0 will be a D-optimal design point only if 4/ F, is
greater than approximately 0.003. In order to produce Figure 2, 6 pairs of border-
line (A, b/ Fon) values were generated manually by calculating D-optimal designs for
a range of (A, b/ Fon) values, and systematically zeroing in on values that belong to
the border separating the two regions, A and B. The 6 points were then plotted and
connected with a cubic spline curve.

Figure 3 illustrates what happens to the D-optimal points when changes are made
to one parameter at a time. The graph in the upper left corner of the figure conforms
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t0 Econ = 100, b = 10, IGp = 1, m = —1.5, Dyac = 1000, A = 1. The Hill curve
in each of the 9 other panels uses all these values except one. This new quantity
replaces the corresponding original value and is shown in the upper right corner
of each panel. When the slope varies from a shallow one (m = —0.5) to a steep
one (m = —10), the two middle D-optimal points tend to converge while staying on
different sides (to the left vs. to the right) of ICsp. This is illustrated by two panels
in the left column, rows 2 and 3. When A increases within a range such that the
corresponding (A, 8/ E.,n) point belongs to the region B, Figure 2; then the two
middle D-optimal points both tend to drift to the right while the distance between
them decreases, as shown in the 2 panels in the top row. The 2 panels refer to
A = 0.6 and A = 1.5, respectively. As soon as A exceeds a certain value, all three
D-optimal points except for the cap (Dypax) move to the right. That happens when,
for example, A = 3 in our setting. The 4 other graphs (two of them conforming
to b = 0.01 and & = 80, respectively, and two corresponding to Dy.x = 10 and
D, = 10000, respectively) are indicative of the effect that an increase in 4 alone
or increase in Dy, alone will have regarding the location of D-optimal points. As &
decreases towards 0, the second D-optimal point moves to the right, and the third
point moves even farther to the right. At 4 = 0, the third and fourth D-optimal
points degenerate into one point at Dy,c. As Dygy increases, the second and third
D-optimal points move slowly to the right; the fourth point is always at Dyy.

Along with the 4-point D-optimal design, we explored two five-point designs which
we call design A and design B, respectively. We intended to create a more robust
design by adding a fifth additional point. Design A consists of the four D-optimal
points plus an additional one computed as a geometric mean of the two middle
D-optimal points. Design B merely replicates one of the D-optimal points (dose2
in Table 1). When all of the assumed parameter values are the true ones, the D-
efficiencies for the 3 designs are: 4-point D-optimal, 1.00; 5-point design B, 0.951,
5-point design A, varies from about 0.93 to 0.94, depending upon the set of true
parameters.

D-optimal designs were used in real laboratory cell growth inhibition studies with
each of seven anticancer drugs combined with the concentration of 78 uM of folic
acid (FA) in the medium. Concentration-effect experiments were conducted in a
96-well plate growth inhibition assay (Levasseur et al., 1995). Briefly, exponentially
growing HCT-8 (human ileocecal adenocarcinoma) cells were plated in wells with
RPMI 1640 medium supplemented with 10% dialysed horse serum on day 0, treated
on day 1 and incubated at 37°C in a 5% humidified atmosphere. Treatments were
randomized on each plate. Cell growth was measured on day 5 with the SRB protein
dye assay.

Methotrexate (MTX) and Trimetrexate (TMTX) are inhibitors of the enzyme,
dihydrofolate reductase. Tomudex (ZD1694) is an inhibitor of thymidylate syn-
thase, and was a gift from Zeneca Pharmaceuticals (Macclesfield, England). AG2032
and AG2034 (inhibitors of glycinamide ribonucleotide formyltransferase), AG2009
(inhibitor of aminoimidazolecarbox-amide ribonucleotide formyltransferase) and
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Table 1. D-optimal designs used in laboratory experiments®

Drug IGsp (uM) m Dmax (uM) dose2? (uM) dose3 (uM) doseb (uM)

TMTX 0.00895 —1.79 8.95 0.00790 0.0303 0.0155
MTX 0.0223 —-2.74 22.3 0.0206 0.0495 0.0319
AG2034 0.453 —-0.825 453 0.321 5.57 1.34
AG2032 0.0774 -3.49 77.4 0.0726 0.145 0.103
AG2009 111 ~1.03 1500¢ 54.2 377 142
AG337 0.468 —1.54 468 0.405 1.94 0.885
ZD1694 0.0429 —1.69 42.9 0.0376 0.156 0.0765

@ Assumed parameter values are: Econ = 1.70, b= 0.137, 1 = 0.794.

b Dose2 and dose3 are two middle points in the 4-point D-optimal design. Dose5 is the fifth point used in
design A together with the 4 D-optimal points.

¢ Dmax = 1500 has been used in this case because a concentration as high as Dmax = 111000 (1000 times
the ICsp) was impractical.

AG337 (inhibitor of thymidylate synthase) were gifts from Agouron Pharmaceuti-
cals, Inc. (San Diego, CA).

Assumed true parameter values for D-optimal design calculations were taken from
previously-completed concentration-effect experiments. For each previous experi-
ment, A was estimated by fitting (2), after logarithmically transforming both sides of
the equation, with unweighted linear regression, to the variances and means of each
set of replicates at each design point. Also, for each experiment the Econ, b, IGo and
mwere estimated by fitting (1) to experimental data with iteratively-reweighted non-
linear regression, with weights equal to the reciprocal of the predicted effect raised
to the power, 2A. These assumed true parameter values, along with the calculated
D-optimal design points, are displayed in Table 1.

RESULTS

Table 2 gives the D-efficiencies of the 4-point D-optimal design, five-point design
A, and a log-spread design, respectively, assuming that: (a) our prior estimates of
the parameter values that we guessed to be the true ones were in fact the true
values; or (b) the analysis of data from the log-spread design resulted in the true
parameter values (although the actual design points are the same as in (a)). The 4-
point D-optimal design included 1 control point at D = 0, and the dose2, dose3 and
Dyax points listed in Table 1. The 5-point design A included the extra doseb point
listed in Table 1 (the geometric mean of the dose2 and dose3 D-optimal points).
The log-spread design included 1 control point at D = 0, and 11 concentrations
serially-diluted by the factor +/10 centered around the assumed ICsp. In case (a) the
D-optimal design which yielded 100-percent D-efficiency is the clear winner, with
5-point design A being a close second with a D-efficiency of about 93% in all cases.
[However, as noted above, the 5-point design B has a D-efficiency of 0.951 for all
experiments in which the assumed parameter values are the true ones, and therefore,
would have edged out the 5-point design A in this competition.] If assumption
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Table 2. D-efficiencies of a set of designs for anticancer drug
concentration-effect curves

4-point 4-point
D-optimal ~ 5-point  Log-spread D-optimal 5-point  Log-spread

Drug design design A design design design A design
TMTX 1.00 0.936 0.728 0.987 0.952 0.678
MTX 1.00 0.936 0.775 0.885 0.933 0.569
AG2034 1.00 - 0.935 0.648 0.752 0.921 0.701
AG2032 1.00 0.936 0.747 0.878 0.851 0.587
AG2009 1.00 0.933 0.706 0.454 0.564 0.349
AG337 1.00 0.936 0.822 0.051 0.887 0.777
ZD1694 1.00 0.936 0.743 0.932 0.944 0.807

Note: Columns 2, 3, and 4 are D-efficiencies of 4-point D-optimal design, 5-point design A, and log-
spread design, respectively, assuming that assunied parameter values were the true ones. Columns
5, 6, and 7 are D-efficiencies of corresponding designs assuming that log-spread design resulted in
true parameter values.

(b) is true, however, 5-point design A beats the 4-point D-optimal design in 9 out of
14 instances, including a dramatic difference in the case of the AG337 compound.
Clearly, both 4-point D-optimal designs and 5-point designs proved themselves to be
more efficient than log-spread designs.

For the real laboratory experiments, the 4-point D-optimal design included 10
replicates per design point, for a total of 40 data points per experiment; the 5-point
design A included 10 replicates per design point for a total of 50 data points per
experiment; and the 12-point log-spread design included b5 replicates per design
point for a total of 60 data points per experiment. The estimates of the parameters
needed to generate the D-optimal designs for these experiments were pooled from
the results of extensive past studies conducted by our group on the same drug and
cell line. The data for each of the 7 drugs for 3 designs (21 total experiments) were
analyzed by fitting model (1) to data with iteratively-reweighted nonlinear regression
as described above. The fitted concentration-effect curves for three compounds,
MTX, TMTX, and AG2009, with 78 uM folic acid in the medium, for the 3 designs,
are displayed in Figure 4. MTX is a representative example of a drug with a relatively
steep concentration-effect curve, AG2009 has a very shallow curve, and TMTX has
a curve with intermediate steepness. Note that for the log-spread design, for MTX
only 1 design point is located on the falling part of the curve, for TMTX there are
3 points, and for AG2009 there are 5-7 points. Overall, the parameters were well
estimated; the standard errors were around 10% or less of the parameter estimates.
Exceptions include AG337 for the 4-point D-optimal design. For these 2 cases, the
design points missed the falling portion of the concentration-effect curve. Overall,
the corresponding parameter estimates are very similar among the 3 designs (Table
3) and the previous experiments.
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Table 3. Parameters estimated from laboratory experiments

Folic
Drug acid (uM) ICs(uM) SE(uM) m SE E,, SE b SE
4-point D-optimal design
TMTX 78 0.0168  0.0015 -—291 0.39 1.21 0.034 0.151 0.012
MTX 78 0.0295 0.0014 —350 0.30 1.20 0.033 0.147 0.011
AG2034 78 0.670 0.12 -1.01 011 1.24 0.040 0.175 0.015
AG2032 78 0.109 0.0048 —342 044 1.28 0.039 0.150 0.013
AG2009 78 306 48 —1.01 011 1.23 0.034 0.139 0.058
AG337 78 0.482 23 —8.87 6100 1.26 0.087 0.150 0.012
ZD1694 78 0.0447 0.0029 -—233 0.28 1.26 0.036 0.175 0.013
5-point design A
TMTX 78 0.0147  0.00075 —2.56 0.23 1.23 0.035 0.153 0.012
MTX 78 0.0258  0.00099 —3.48 0.34 1.22 0.038 0.160 0.013
AG2034 78 0.465 - 0.059 —139 018 1.25 0.044 0.205 0.016
AG2032 78 0.106 0.0039 —3.18 0.36 1.28 0.039 0.149 0.013
AG2009 78 308 43 —1.09 0.18 1.23 0.032 0.150 0.048
AG337 78 0.519 0.025 -3.08 0.28 1.25 0.037 0.150 0.010
ZD1694 78 0.0427 0.0021 -—2.81 0.27 1.26 0.035 0.18 0.011
Log-spaced design
TMTX 78 0.0124  0.00090 —1.99 0.23 1.23 0.017 0.172 0.013
MTX 78 0.0264 0.0014 —3.89 0.70 1.23 0.017 0.180 0.011
AG2034 78 0.596 0.058 —-139 0.16 1.24 0.018 0.239 0.016
AG2032 78 0.114 0.0063 —326 045 1.24 0.018 0.171 0.011
AG2009 78 235 51 —0.959 0.16 1.24 0.018 0.185 0.076
AG337 78 1.36 0.089 —2.54 0.35 1.22 0.017 0.193 0.013
ZD169%4 78 0.0628 0.0048 —2.20 0.32 1.24 0.018 0.184 0.019

Replication of design points is important in creating practical designs. It is known
from theory (Bates and Watts, 1988; Seber and Wild, 1989) that the standard error of
an individual parameter estimate decreases proportionally to 1/ /1, when nis large
relative to the number of parameters in the model. Here 7 is the total number of
design points used (each pointis counted as many times as it is replicated). With the
cell culture experimental system described above, where n was varied from around
10 to 100 for the drugs, AG 2032 and AG 2009, for both D-optimal and several
rival designs (data not shown), this theoretical result was confirmed. In addition, we
showed that both 4-point D-optimal design and 5-point design A result in smaller
standard errors of the parameter estimates if compared to logarithmicallyspaced
design. We have also showed that one needs to replicate the 4 D-optimal points as
evenly as possible in order to attain higher efficiency.

DISCUSSION

In this paper we examined different designs for the estimation of parameters in
the Hill model. We assume that the true underlying model is known and thatit is the
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Hill model. We also assume that the variance component is given by the power model
(2). Our laboratory experience supports these assumptions. One should be aware
that these assumptions may not hold for a different type of data. For instance, the
binomial variance model o7 = y; (1 — 3) may be appropriate when data is quantal.
It has also been used to model variance of continuous responses. This is a different
model. The D-optimal designs for the logistic model with two parameters under
binomial variance assumption were first derived by (Kalish and Rosenberger, 1978).
The two D-optimal points conform in this case to the predicted responses of 0.176
and 0.824, respectively. Endrenyi and co-authors investigated how calculated designs
depend on deviations from the correctness of different assumptions (Endrenyi et al.,
1987). Their study concerns the logistic dose-response function with 2 parameters
and the Hill model with 3 parameters. The authors consider effects of departure
from 3 of the usual assumptions which are routinely made for the design of the
experiments: (1) the form of the distribution and (2) the relative variances of the
observational errors, and (3) the assumed prior knowledge of nonlinear parameter
values. It has been shown that the D-optimal designs are sensitive with respect to the 3
types of departures albeit to a different degree: (1) and (2) affect both the location
of the design points and the D-efficiency more dramatically than (3). While we
don’t address the form of the distribution in the paper, we illustrate the departure
from the two other assumptions in Figure 3 and provide relevant comments. It
was shown that in this respect D-optimal designs are quite robust. The robustness
improves when 5-point designs are considered. D-optimal designs, pure or modified,
are practical and useful when the true underlying model is known, a good prior
knowledge of parameters is available, and experimental units are relatively dear. A
practical limitation of D-optimal designs, which we have encountered, centers at the
relative ease in making serial dilutions of drugs in 96-well plate assays. Interestingly,
when each experimental unit is very inexpensive, the extra time needed to make
the appropriate drug dilutions to make a frugal D-optimal design may result in
more trouble and expense than using less frugal serial-dilution-based logarithmically
spread designs.

Both Mathematica code and a Fortran program to generate D-optimal de-
signs for the Hill model are available from the authors, as are all derivations
and proofs. Our software does not require initial guesses for D-optimal design
points. We found that the more general ADAPT II (D’Argenio and Shumitsky,
1979) software package generated correct D-optimal designs for the 4-parameter
Hill model for all cases in which the required initial design point guesses were
reasonable.
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